Semi-supervised Data Representation via Affinity Graph Learning

نویسنده

  • Weiya Ren
چکیده

We consider the general problem of utilizing both labeled and unlabeled data to improve data representation performance. A new semi-supervised learning framework is proposed by combing manifold regularization and data representation methods such as Non negative matrix factorization and sparse coding. We adopt unsupervised data representation methods as the learning machines because they do not depend on the labeled data, which can improve machine’s generation ability as much as possible. The proposed framework forms the Laplacian regularizer through learning the affinity graph. We incorporate the new Laplacian regularizer into the unsupervised data representation to smooth the low dimensional representation of data and make use of label information. Experimental results on several real benchmark datasets indicate that our semi-supervised learning framework achieves encouraging results compared with state-of-art methods.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ontology Similarity Measuring and Ontology Mapping Algorithms Via Graph Semi-Supervised Learning

Ontology similarity calculation is important research topics in information retrieval and widely used in biology and chemical. By analyzing the technology of semi-supervised learning, we propose the new algorithm for ontology similarity measure and ontology mapping. The ontology function is obtained by learning the ontology sample data which is consisting of labeled and unlabeled ontology data....

متن کامل

Structure Preserving Low-Rank Representation for Semi-supervised Face Recognition

Constructing an informative and discriminative graph plays an important role in the graph based semi-supervised learning methods. Among these graph construction methods, low-rank representation based graph, which calculates the edge weights of both labeled and unlabeled samples as the low-rank representation (LRR) coefficients, has shown excellent performance in semi-supervised learning. In thi...

متن کامل

Enhanced low-rank representation via sparse manifold adaption for semi-supervised learning

Constructing an informative and discriminative graph plays an important role in various pattern recognition tasks such as clustering and classification. Among the existing graph-based learning models, low-rank representation (LRR) is a very competitive one, which has been extensively employed in spectral clustering and semi-supervised learning (SSL). In SSL, the graph is composed of both labele...

متن کامل

Large-Scale Graph-based Semi-Supervised Learning via Tree Laplacian Solver

Graph-based Semi-Supervised learning is one of the most popular and successful semi-supervised learning methods. Typically, it predicts the labels of unlabeled data by minimizing a quadratic objective induced by the graph, which is unfortunately a procedure of polynomial complexity in the sample size n. In this paper, we address this scalability issue by proposing a method that approximately so...

متن کامل

Low rank representation with adaptive distance penalty for semi-supervised subspace classification

The graph based Semi-supervised Subspace Learning (SSL) methods treat both labeled and unlabeled data as nodes in a graph, and then instantiate edges among these nodes by weighting the affinity between the corresponding pairs of samples. Constructing a good graph to discover the intrinsic structures of the data is critical for these SSL tasks such as subspace clustering and classification. The ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1502.03879  شماره 

صفحات  -

تاریخ انتشار 2015